Constant Sign and Nodal Solutions for Problems with the p-Laplacian and a Nonsmooth Potential Using Variational Techniques

نویسندگان

  • Ravi P. Agarwal
  • Michael E. Filippakis
  • Donal O’Regan
  • Nikolaos S. Papageorgiou
  • Juan J. Nieto
چکیده

We consider a nonlinear elliptic equation driven by the p-Laplacian with a nonsmooth potential hemivariational inequality and Dirichlet boundary condition. Using a variational approach based on nonsmooth critical point theory together with the method of upper and lower solutions, we prove the existence of at least three nontrivial smooth solutions: one positive, the second negative, and the third sign changing nodal solution . Our hypotheses on the nonsmooth potential incorporate in our framework of analysis the so-called asymptotically p-linear problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse nodal problem for p-Laplacian with two potential functions

In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...

متن کامل

Existence and multiplicity of nontrivial solutions for‎ ‎$p$-Laplacian system with nonlinearities of concave-convex type and‎ ‎sign-changing weight functions

This paper is concerned with the existence of multiple positive‎ ‎solutions for a quasilinear elliptic system involving concave-convex‎ ‎nonlinearities‎ ‎and sign-changing weight functions‎. ‎With the help of the Nehari manifold and Palais-Smale condition‎, ‎we prove that the system has at least two nontrivial positive‎ ‎solutions‎, ‎when the pair of parameters $(lambda,mu)$ belongs to a c...

متن کامل

Solutions for Nonlinear Variational Inequalities with a Nonsmooth Potential

First we examine a resonant variational inequality driven by the p-Laplacian and with a nonsmooth potential. We prove the existence of a nontrivial solution. Then we use this existence theorem to obtain nontrivial positive solutions for a class of resonant elliptic equations involving the p-Laplacian and a nonsmooth potential. Our approach is variational based on the nonsmooth critical point th...

متن کامل

Multiple solutions to a class of inclusion problems with operator involving p ( x ) - Laplacian

In this paper, we prove the existence of at least two nontrivial solutions for a nonlinear elliptic problem involving p(x)-Laplacian-like operator and nonsmooth potentials. Our approach is variational and it is based on the nonsmooth critical point theory for locally Lipschitz functions.

متن کامل

MULTIPLE SOLUTIONS FOR A DIRICHLET PROBLEM WITH p-LAPLACIAN AND SET-VALUED NONLINEARITY

The existence of a negative solution, of a positive solution, and of a sign-changing solution to a Dirichlet eigenvalue problem with p-Laplacian and multi-valued nonlinearity is investigated via suband supersolution methods as well as variational techniques for nonsmooth functions. 2000 Mathematics subject classification: 35J20, 35J85, 49J40.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009